Show simple item record

dc.contributor.authorPilly, Praveen K.en_US
dc.contributor.authorGrossberg, Stephenen_US
dc.contributor.authorSeitz, Aaron R.en_US
dc.date.accessioned2011-11-14T18:17:10Z
dc.date.available2011-11-14T18:17:10Z
dc.date.issued2009-6en_US
dc.identifier.urihttp://hdl.handle.net/2144/1971
dc.description.abstractStudies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are of great controversy, largely because such learning can often be attributed to plasticity in later stages of sensory processing or in the decision processes. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity, by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in conjunction with the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show learning for the exposed contrast polarity and that this learning does not transfer to the unexposed contrast polarity. These results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells.en_US
dc.description.sponsorshipCELEST, an NSF Science of Learning Center (SBE-0354378); Defense Advanced Research Projects Agency SyNAPSE program (HR0011-09-3-0001, HR001-09-C-0011); National Science Foundation (BCS-0549036); National Institutes of Health (R21 EY017737)en_US
dc.language.isoen_USen_US
dc.publisherBoston University Center for Adaptive Systems and Department of Cognitive and Neural Systemsen_US
dc.relation.ispartofseriesBU CAS/CNS Technical Reports;CAS/CNS-TR-2009-007en_US
dc.rightsCopyright 2009 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.en_US
dc.titleTask-Irrelevant Perceptual Learning Specific to the Contrast Polarity of Motion Stimulien_US
dc.typeTechnical Reporten_US
dc.rights.holderBoston University Trusteesen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record