Show simple item record

dc.contributor.authorGrossberg, Stephenen_US
dc.contributor.authorMcLoughlin, Niallen_US
dc.date.accessioned2011-11-14T18:50:16Z
dc.date.available2011-11-14T18:50:16Z
dc.date.issued1995-07en_US
dc.identifier.urihttp://hdl.handle.net/2144/2199
dc.description.abstractPrevious models of stereopsis have concentrated on the task of binocularly matching left and right eye primitives uniquely. A disparity smoothness constraint is often invoked to limit the number of possible matches. These approaches neglect the fact that surface discontinuities are both abundant in natural everyday scenes, and provide a useful cue for scene segmentation. da Vinci stereopsis refers to the more general problem of dealing with surface discontinuities and their associated unmatched monocular regions within binocular scenes. This study develops a mathematical realization of a neural network theory of biological vision, called FACADE Theory, that shows how early cortical stereopsis processes are related to later cortical processes of 3-D surface representation. The mathematical model demonstrates through computer simulation how the visual cortex may generate 3-D boundary segmentations and use them to control filling-in of 3-D surface properties in response to visual scenes. Model mechanisms correctly match disparate binocular regions while filling-in monocular regions with the correct depth within a binocularly viewed scene. This achievement required introduction of a new multiscale binocular filter for stereo matching which clarifies how cortical complex cells match image contours of like contrast polarity, while pooling signals from opposite contrast polarities. Competitive interactions among filter cells suggest how false binocular matches and unmatched monocular cues, which contain eye-of-origin information, arc automatically handled across multiple spatial scales. This network also helps to explain data concerning context-sensitive binocular matching. Pooling of signals from even-symmetric and odd-symmctric simple cells at complex cells helps to eliminate spurious activity peaks in matchable signals. Later stages of cortical processing by the blob and interblob streams, including refined concepts of cooperative boundary grouping and reciprocal stream interactions between boundary and surface representations, arc modeled to provide a complete simulation of the da Vinci stereopsis percept.en_US
dc.description.sponsorshipOffice of Naval Research (N00014-95-I-0409, N00014-85-1-0657, N00014-92-J-4015, N00014-91-J-4100); Airforce Office of Scientific Research (90-0175); National Science Foundation (IRI-90-00530); The James S. McDonnell Foundation (94-40)en_US
dc.language.isoen_USen_US
dc.publisherBoston University Center for Adaptive Systems and Department of Cognitive and Neural Systemsen_US
dc.relation.ispartofseriesBU CAS/CNS Technical Reports;CAS/CNS-TR-1995-022en_US
dc.rightsCopyright 1995 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.en_US
dc.subjectStereopsis
dc.subjectDepth perception
dc.subjectBinocular vision
dc.subjectDa Vinci stereopsis
dc.subjectComplex cells
dc.subjectNeural networks
dc.subjectVisual cortex
dc.subjectBoundary contour system
dc.subjectFACADE theory
dc.titleCortical Dynamics of 3-D Surface Perception: Binocular and Half-Occluded Scenic Imagesen_US
dc.typeTechnical Reporten_US
dc.rights.holderBoston University Trusteesen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record