Show simple item record

dc.contributor.authorGrossbergy, Stephenen_US
dc.contributor.authorRudd, Michael E.en_US
dc.date.accessioned2011-11-14T18:21:48Z
dc.date.available2011-11-14T18:21:48Z
dc.date.issued1991-04en_US
dc.identifier.urihttp://hdl.handle.net/2144/2073
dc.description.abstractThis article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams Vl --> V2, Vl --> MT, and Vl --> V2 --> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-ofcontrast and insensitive to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to directionof-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion; split motion; gamma motion and reverse-contrast gamma motion; delta motion; visual inertia; the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's Laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes.en_US
dc.description.sponsorshipAir Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (AFOSR-90-0083); Hughes Aircraft Company (S1-903136)en_US
dc.language.isoen_USen_US
dc.publisherBoston University Center for Adaptive Systems and Department of Cognitive and Neural Systemsen_US
dc.relation.ispartofseriesBU CAS/CNS Technical Reports;CAS/CNS-TR-1991-018en_US
dc.rightsCopyright 1991 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.en_US
dc.subjectVision
dc.subjectNeural networks
dc.subjectMotion perception
dc.subjectVisual cortex
dc.subjectBoundary contour system
dc.subjectApparent motion
dc.subjectForm perception
dc.subjectMT
dc.subjectV1
dc.subjectV2
dc.titleCortical Dynamics of Visual Motion Perception: Short-Range and Long-Range Apparent Motionen_US
dc.typeTechnical Reporten_US
dc.rights.holderBoston University Trusteesen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record