2013-08-08

Changes in Functional Connectivity Associated with Treatment Gains in Aphasia

Sandberg, Chaleece

http://hdl.handle.net/2144/6379

Boston University
Changes in Functional Connectivity Associated with Treatment Gains in Aphasia
Chaleyce Sandberg, Swathi Kiran

Boston University, Sargent College of Health and Rehabilitation Sciences
This work was supported by an F31 NRSA granted by NICHD/NIC (F31HD011220-01A) and a Dudley Allen Sargent Research Fund Award granted by Sargent College.

Introduction
- Persons with aphasia who are trained to generate abstract words (e.g., justice) in a specific context-category (e.g., courtroom) have been shown to improve not only on the trained items, but also on concrete words (e.g., lawyer) in the same context-category (Kiran, Sandberg, & Abbott, 2009).
- However, the underlying neural mechanism of this generalization effect is unknown.

Methods
- Participants
 - Five right-handed persons with aphasia secondary to left hemisphere stroke (T F, mean age: 53).
 - All participants were scanned using fMRI before and after a therapy-based treatment.
- Treatment
 - Based on the Complexity Account of Treatment Efficacy (Thompson, Shapiro, Kiran, & Sabeckis, 2003)
 - Consisted of training abstract words in a specific context-category for up to 10 weeks.
 - Criterion for stopping treatment before 10 weeks: 80% accuracy for 2 weeks in a row
- fMRI Task
 - Word Judgment
- Data Analysis
 - GLM in SPM8
 - Contras
 - Post-treatment Abstract > Pre-treatment Abstract
 - Post-treatment Concrete > Pre-treatment Concrete
 - Task-related functional connectivity
 - CONN toolbox for SPM8
 - Functional ROIs = 5 mm sphere around peak activation voxels elicited during word processing (i.e., abstract + concrete > control)
 - Used meta-analyses of abstract and concrete word processing (Binder, Desai, Graves, & Conant, 2009; Redifer, Wang, Corder, Bitzer, & Shinar; 2010 [BLUE]) and our own work in healthy older adults [GREEN] as a guide.
- Conducted semipartial ROI-ROI correlations individually for each patient to create 4 networks:
 - Post-treatment Abstract
 - Post-treatment Concrete
 - Pre-treatment Abstract
 - Pre-treatment Concrete
- Pre-treatment matrix subtracted from post-treatment matrix to obtain increases in connectivity (decreases ignored for now).
 - Used confidence intervals to determine significance of each value
 - Focused on increases that resulted in positive correlations post-treatment

Conclusions
- Overall, behavioral gains in treatment are measurable as specific neural changes in fMRI and task-related functional connectivity in persons with aphasia.
- All patients show more changes in intra-L(L-L or R-R) than inter-hemispheric connections for both abstract and concrete networks.
- For the trained items, there is no correlation between increases in connectivity and effect size; however, there is a negative correlation between number of connections that change in the concrete network and the effect size for generalization to concrete words. This may indicate increased effort.
- There appear to be certain nodes in the abstract network whose connections increase as a function of treatment (FWE p < .05).
- All but one patient showed changes in both abstract (trained) and concrete (untrained) word processing.

References