Changes in Functional Connectivity Associated with Treatment Gains in Aphasia
Chaleece Sandberg, Swathi Kiran
Boston University, Sargent College of Health and Rehabilitation Sciences

This work was supported by an F31 NRSA granted by NIDCD/NID (1F31DC011220-01A1) and a Dudley Allen Sargent Research Fund Award granted by Sargent College.

Introduction

- Persons with aphasia who are trained to generate abstract words (e.g., justice) in a specific context-category (e.g., courthouse) have been shown to improve not only on the trained items, but also on concrete words (e.g., lawyer) in the same context-category (Kiran, Sandberg, & Abbott, 2009).
- However, the underlying neural mechanism of this generalization effect is unknown.

Methods

- Participants
 - Five right-handed persons with aphasia secondary to left hemisphere stroke (T F, mean age: 53).
 - All participants were scanned using fMRI before and after a therapy-based treatment.
- Treatment
 - Based on the Complexity Account of Treatment Efficacy (Thompson, Shapiro, Kiran, & Sabeckis, 2003).
 - Consisted of training abstract words in a specific context-category for up to 10 weeks.
 - Criterion for stopping treatment before 10 weeks = 80% accuracy for 2 weeks in a row
- fMRI Task
 - Word Judgment
- Data Analysis
 - GLM in SPM8
 - Contrasts
 - Post-treatment Abstract > Pretreatment Abstract
 - Post-treatment Concrete > Pretreatment Concrete
 - Task-related functional connectivity
 - CONN toolbox for SPM
 - Functional ROIs = 5 mm sphere around peak activation voxels elicited during word processing (i.e., abstract + concrete = control)
- Conducted semipartial ROI-ROI correlations individually for each patient to create 4 networks:
 - Pre-treatment: 1. Abstract 2. Concrete
 - Post-treatment: 3. Abstract 4. Concrete
- Pre-treatment matrices subtracted from post-treatment matrices to obtain increases in connectivity (decreases ignored for now).
 - Used confidence intervals to determine significance of each value
 - Focused on increases that resulted in positive correlations post-treatment

Treatment Results

- All six patients showed increases in activation from pre to post-treatment (FWE p < .05).
- All but one patient showed changes in both abstract (trained) and concrete (untrained) word processing.
- Regions included perisylvian areas, ipsilateral areas, and right hemisphere homologues.

Conclusions

- Overall, behavioral gains in treatment are measurable as specific neural changes in fMRI and task-related functional connectivity in persons with aphasia.
- All patients show more changes in intra-L (L or R) than inter-hemispheric connectivity for both abstract and concrete networks. Furthermore, the laterality of these connections is changing from left-biased before treatment to right-biased after treatment (p < .05) for both abstract and concrete networks. This may indicate compensation rather than restoration of function.
- For the trained items, there is no correlation between increases in connectivity and effect sizes; however, there is a negative correlation between number of connections that change in the concrete network and the effect size for generalization to concrete words. This may indicate increased effort.
- There appear to be certain nodes in the abstract network whose connections increase as a function of treatment gain, and changes in the concrete network, the nodes are different depending on whether or not generalization occurred. This difference is interesting and may be important for understanding training vs. generalization effects.

References