2012-08-21

The Kingdom of God as Relation

Langston, Amelia Nan
Boston Theological Institute

http://hdl.handle.net/2144/3928
Boston University
The Kingdom of God as Relation

Amelia Nan Langston

The author describes the theory of an emerging interdisciplinary field called 'ecological science,' the study of which leads to innovative ideas about the nature of God.

Science and theology have long been blood-brothers, and they have feuded as only close relatives can. While each has longed to claim a primacy of vision and truth for itself alone, theology based upon sacred texts and revealed truth, and science upon doubt, procedure, and discovery, they have always shared a fundamental belief about the nature of reality—a belief in the ancient Greek philosophical notions of perfection. They have shared a search for the immutable, the unchanging, the first cause, the unmoved mover, the Theory of Everything, the Mind of God. The first scientists were frank about their search for God in the laws of the universe; somewhere there were regularities to be discovered, rules that God had put in place when creating the universe, rules that still governed. Knowing these laws would provide the solid basis for a moral human life. God as the Good, the first cause, the unmoved mover is familiar in theology, and much thought has been devoted to ferreting out this God through the judicious use of logic and elimination--God must do good and not evil, for instance.

However, recent changes in science question the very existence of perfect, unchanging essence. Critiques of the traditional scientific quest for essential truths propose a very different metaphysical vision, one based upon process and relation as formative and fundamental. This "ecological" science prompts us to reread the scriptures with different assumptions in mind, and to notice that Jesus said, "The kingdom of God is among you."1

Theology has sought to define how God must be, while science has sought God in the natural world, basing the search upon theological ideas of God. Many of the defining characteristics of God have been rooted in ancient Greek philosophy. The goal of the early Greek philosophers was to "account for all natural phenomena in terms of a few simple substances or principles."2 These substances or principles had to adhere to the Greek notions of perfection; they had to be unchanging, transcendent, and immutable. Plato developed a notion of Forms, which sees the material world as a shadowy and imperfect realization of a spiritual ideal. This spiritual ideal must represent the perfect essence of its material realization, thus it must be unchanging, immutable, timeless. This philosophical frame of reference was picked up by early Jewish and Christian theologians such as Philo of Alexandria and Augustine, and so on into modern theology and modern science.

The Jewish theologian Philo (d. c. 50 C.E.) wedded Greek philosophy and Hebrew religion to develop a doctrine of God as pure being, as the First Principle.3 Augustine of Hippo (5th c.) later made similar claims—that God must be pure being, immutable and unchanging.4 David Pailin points out some of the problems with the logical progression of these ideas about God in theology. According to Pailin, both Anselm (11-12th c) and Aquinas (13th c) conceived a God that cannot relate to or be affected by creatures, for to do so would be to compromise the divine perfection and immutability.5 This quest for the essence, or essential
definition, of God continues to the present day. The problem with this endeavor is that in the search for God’s essence, God must immediately be made finite and bounded by human rationality. God must be good and not evil, unmoved but capable of setting in motion. Paul Tillich, for example, attempts to unbind God by defining Deity as both being and non-being; and yet he still weights being, equating it with goodness.6 Science, in seeking the mind of God in the natural world, has been plagued with these same assumptions about God.

Early science sought to discover the laws and universal principles that God put into place when creating the universe. As such, the laws and universal principles that science would uncover must necessarily reflect the same paradigm as God’s own self; they must be unchanging, universal, perfect, and true. René Descartes laid down a paradigm of proper knowledge in his Discourse on Method and Meditations on First Philosophy, unconsciously using these same categories. Descartes hoped that by using a system of radical doubt and skepticism, and by applying all “ideas” to that doubt, one could discover things that one could not doubt, and these ideas could then be considered to be true. His methodology consisted of breaking down ideas into their component parts, testing the parts for truth, and then rebuilding the idea. An idea with true parts must as a whole be true--much like a machine, whose component parts must have integrity for it to function.

Even though he had developed a concept and methodology of radical doubt, there were many fundamental assumptions about the nature of the world that Descartes did not question. Descartes assumed that there were indeed fixed laws, put in place by God at creation: that matter is inert and dead, quickened only in human beings by the God-given rational soul, and that God had combined objects in the natural world into stable and predictable systems.8 This model sees a world that functions as a machine, and that can be understood as such. It assumes that the existence of discrete entities that interact in a linear fashion, and that by discovering these entities and their interactions, one can successfully predict and thus control the future.

Two centuries after Descartes set forth the basic principles of science, Thomas Huxley, natural scientist and friend to Charles Darwin, struggled to realize a comprehensive scientific model of knowledge based on the world-as-machine model. Huxley, in his Essays, felt that the paradigm of the machine could be applied to all areas of study in the natural sciences. Once one had determined the laws and principles that moved the machine, one would have discovered the mind of God and would have a basis for moral action, for nature “is creating a firm and living faith in the existence of immutable moral and physical laws, perfect obedience to which is the highest possible aim of an intelligent being.”9

Worldviews are subject to change, however. Thomas Kuhn, in The Structure of Scientific Revolutions, claims that when current theories and models are found to be inadequate and are subject to repeated and systemic theory failure, a revolution in scientific thought occurs.10 The Cartesian world-as-machine model has come to be seen as inadequate to describe the world. This revolution began first, perhaps, with physics and Heisenberg’s Uncertainty Principle, which states that the more accurately one measures a particle’s mass, the less accurately one can measure its

What I will call ecological science encompasses many theories, such as chaos, bifurcation, catastrophe, complexity and hierarchy, as well as feminist post-modern critiques of traditional science.
speed. This principle states that perfect knowledge in one area precludes it in another, and thus overturned the possibility of determinism and certainty at the smallest level, bringing the Cartesian worldview into doubt. Ecology, as a science based upon systems rather than discrete entities, is a more recent challenge to the traditional scientific model, questioning the basis for reductionism, linearity, and cause-and-effect models.

Recent critiques of traditional science range across a spectrum of the degree to which they disagree with Cartesian definitions of reality. What I will call ecological science encompasses many theories, such as chaos, bifurcation, catastrophe, complexity and hierarchy, as well as feminist post-modern critiques of traditional science. These theories, or sciences, are ecological in that they seek to understand systems of relation and process, rather than discrete entities or universal principles. Upholders of theories such as chaos, complexity and hierarchy, however, seem more inclined to accept the existence of an external reality, while feminist, post-modern critiques maintain that we create the reality that we seek to explain. They diverge in that sciences of complexity focus on new ways of doing science, and post-modern critiques focus on new ways of doing science. Both, however, see relation and process as fundamental realities, and it is that realization that differentiates them from traditional science.

Chaos, complexity, and hierarchy are interrelated theories that state that the world is made up of systems that are inherently unpredictable (chaos), irreducible and nonlinear (complexity), and which, therefore, must be explained with limited and contingent theories that are relevant only for a particular scale or situation (hierarchy). There are several techniques or theories that deal with unpredictability—bifurcation, mathematical chaos, and catastrophe. They all deal with phenomena of change, and with the inherent indeterminacy of system function. These theories maintain that systems are naturally chaotic and unpredictable, rather than being stable, as a Cartesian framework assumes. For that reason, they are interested in process and the evolution of systems, seeing change as a fundamental reality. Thus, an essential aspect of chaos theory is that the complex interactions that arise in systems cannot be extrapolated back in time, or back to a first cause; predictable linearity does not hold.

Complexity states that a fundamental reality of systems is that they are complex, i.e., nonlinear and irreducible. Non-linearity has to do with unpredictability and organic process. Systems or entities do not march forward in a simple, cause-and-effect pattern; there is no determined or inevitable end to any set of interactions. Instead, there are feedback loops, self-regulatory mechanisms, unknown and indeterminate interactions, phase shifts to new levels of stability. 1+1+1 may equal 1, or it may equal 57, or the whole system may shift and negate the frame of reference that defined the 1. For example, if one looks at climate change as a simple, linear system, the temperature of Earth should increase incrementally as the level of greenhouse gases in the atmosphere increases (if the greenhouse theory is correct). Recent findings indicate, however, that marine algal blooms, caused by nutrient-loading from sewage and agricultural runoff, as well as warming ocean waters, make a waste product, dimethyl sulfide, which may seed cloud formation, increase the albedo effect, and decrease Earth's temperature. Such feedback loops are an intrinsic part of self-regulating organic systems, and they render linear frameworks useless for understanding, much less for prediction.

Irreducibility is another facet of complexity and non-linearity. Irreducibility holds that the sum is greater than the parts. Thus, a system cannot be broken into its individual parts and put back together through linear logic, as Descartes assumed was possible; nor can individual organisms be abstracted from their communities and contexts as representative of the whole system. For instance, Stephen Jay Gould maintains that variation in populations and
change over time are the reality; one cannot reduce "horses" to "horse," for example, and have an understanding for the present, past or future. The range and variety of horses within their environments has scientific meaning and validity, not the concept of the essential horse, abstracted from relation to environment and dynamic change.¹⁴ Theories, as well, cannot be reduced to one theory that can explain everything. Stewart and Cohen show that even with a Theory of Everything (TOE) established within a very simple, rule-based logical universe—a computer program, for instance—chaotic circumstances arise which the TOE cannot explain or predict.¹⁵

Hierarchy serves as a theoretical justification for the patchwork of theories and explanations that arise out of complexity and chaos. Hierarchy theory maintains that reality is made up of interconnected levels that cannot be reduced to, and understood at, a more basic level. One cannot abstract a single individual and hope to explain a community or society from that person, nor can one theoretically explain the biological progression from a single cell to an individual human being. Theories must be located within a particular hierarchical level, and the findings will be relevant for that level only. Two different hierarchical levels probably cannot be described or explained by the same theory, and no universal theory can exist to make sense of phenomena.

The fundamental assertion within this systems mode of thought is that, unlike Newton's interacting bodies that remain unchanged by the interaction, individuals do not exist as discrete entities. Instead, in an ecological science, entities are seen to be formed by their relations—to their environments, to other entities, to their pasts. As O'Connor points out:

In the view of complexity, the properties that an element displays are not deemed intrinsic and immutable to the observed 'object' itself. Rather, the discernible components together with their properties 'emerge' and are manifest within a collective regime of activity. Objects and properties are the co-effects of the totality of their interactions. A given element can only be understood in terms of its inter-being with the rest of what is (which is, in the first approximation, the object's environment).¹⁶

This kind of understanding changes the nature of science itself. The traditional goal of prediction and control must give way to respect for the integrity of systems, for variation, and for diversity. The inherent unpredictability of reality, rather than being a stumbling block, can be seen as the vital signs of a living system. As O'Connor says, indeterminacy points us toward better theories and questions about the world.¹⁷ The prediction and manipulation desired by traditional science is a dead system of control, not a living conversation with dynamic phenomena.¹⁸

These criticisms are carried a step farther by feminist thinkers who use post-modern concerns about the nature of objectivity to question the execution of science, as well as the responsibilities of scientists themselves. Ina Wagner and Elisabetta Donini both call for a contextualization of science and scientists, and an integration of science into the responsibilities of process and relation.

Ina Wagner is concerned about the performance of science by its practitioners. She sees the need for scientists to work in context and in responsible relation to the world. From this perspective, she criticizes the concept of objectivity, which she claims allows scientists to evade responsibility for their work by pretending that the scientific question and answer were both inevitable, existing independently of the scientist.¹⁹

The tendency to abstract, and to work in simulations of reality, encourages the attitude that science is a game, that all is permitted, and that social norms, therefore, are suspended. Scientific inquiry does not encourage its practitioners to seek out the difference between model and reality; effort is focused on the medium—the conceptual tools and methods. The problems of objectivity and abstraction remove the scientist and scientific endeavor from a sense of responsibility, accountability, and meaningful location within a world of very real issues and problems. Wagner suggests
several methods for scientists to recontextualize themselves and their work, which involve being aware of the political and technological implications of one's work, and of the assumptions and paradigms under which one works; such awareness can help with the important task of making one's work accessible to people outside one's own field. Wagner's critique is useful in bringing a sense of responsibility and accountability into scientific practice.

The tendency to abstract, and to work in simulations of reality, encourages the attitude that science is a game, that all is permitted, and that social norms, therefore, are suspended.

Elisabetta Donini, however, takes this critique farther in questioning the very paradigm of science itself. Donini denies the existence of objectivity as well, seeing male subjectivity as "embedded in the very structure of objectivity ascribed to science" and, therefore, also calling into question the inevitability of scientific values and valuations. For Donini, however, the ability to question objectivity, and thus the presumed necessity of doing science in a particular "objectively correct" way, opens a path for new ways of thinking about science. Donini and her colleagues in Italy used the problem of radioactive fallout from Chernobyl to propose a new scientific ethic. Instead of the "male-biased aims of building up more and more sophisticated technological systems, in an endless challenge to subjugate natural forces," Donini proposes an "awareness of limits" and a sense of being within the processes and relationships of the natural world. This "location internal to process" changes the focus of science from the ends to the means. Good process means good relation and, thus, desirable ends.

These critiques of science offered by chaos, complexity, hierarchy, and feminist post-modernism question the ancient Greek philosophical notions of truth and perfect knowledge as being immutable, universal, unchanging, and transcendent. Ecological science locates truth in process and relation, rather than in objectively discoverable principles, or definable entities. The concept of natural law in science—the desire to locate God in the workings of the universe—seems a valid way of understanding ourselves and our relation to the divine, since we are certainly an important part of the natural world. However, it is unlikely that the God we discover there will be immutable, unchanging, or perfect in any philosophical sense.

Jesus said "The kingdom of God is among you." If we can find God in the process of relation, perhaps we can indeed dwell in a kingdom of God.

What ecological science points us toward, however, is an awareness that this kingdom is not only peopled by human beings, but must be made up of the entire natural world. Complexity theory proposes the emergence of entities from relations, and so emphasizes our ability to affect and create our world, while indeterminacy and chaos underscore our inability to control it. This realization makes human beings responsible for right relation, which is all we can do, for control is forever out of our reach. Perhaps in means that are respectful of other creatures and Earth, the kingdom of God can be created and the ends will take care of themselves.

Works cited:

THE BOSTON THEOLOGICAL INSTITUTE

Stewart, Ian, and Jack Cohen. “Why are there simple rules in a complicated universe?” *Futures*, 26, no. 6 (1994), 648-64.

Endnotes:

2. Stead, p. 4.
5. Pailin, pp. 144-145.
7. Ideas, for Descartes, were the mental representations of all things—perceptions of emotions, people, trees, animals, heat, cold, mathematical principles. All of these things could be known only through their mental representations—as an "idea," and another person was as open to doubt as an emotion or feeling.

10. See Kuhn.
12. See O’Connor.
13. See Tester.
15. See Stewart and Cohen.
19. See Wagner.
20. See Donini.

Amy Langston received her M.Div. degree from Harvard Divinity School in 1997. She served for two years as Environmental Chaplain at the Divinity School, and also as co-director of the Faith and Ecology Program of the B.T.I. She currently works in the field of cross-species epidemiology at Health, Ecological, and Economic Dimensions of Global Change, based at Harvard University. Her religious tradition is Unitarian Universalist.

This essay was awarded a Second Prize.
The author looks at the role of human emotions in decision-making. After noting the weakness in the Kantian view of morality, he examines Thomas Aquinas's ideas concerning the place of the passions in moral agency. Finally turning to Antonio Damasio's interpretations of contemporary neurological research, he finds support for Thomas and new opportunity for fruitful dialogue between theology and science.

The relation between reason and the emotions is not often treated in Christian moral theology. Because moral theology has traditionally been concerned with the assignment of praise or blame for human actions, the will has been the subject of closest scrutiny. Surely this discipline may be expected to continue to focus on the will; however, underlying such a concentration on the will, often may be found a set of assumptions regarding reason and emotion. In the exercise of the will, the moral agent is encouraged to heed the guidance of reason, and be wary of the unpredictable and often adulterating influence of the emotions. When considering an ethical decision, one is warned, "Don't be so emotional! Be reasonable about this!" Emotions are viewed as unreliable, untamed impulses that interfere with the "cool" precision of reason.1

Reason, on the other hand, is seen as the impartial judge that enables a moral agent to weigh alternative choices prudently before selecting the most morally acceptable. Consequently, theologians of the past have been, at best, wary of the role of emotion in the moral life. The most notorious example of such a view is that of Kant, who insisted that any moral action, in order to be considered such, must be performed purely out of duty.2 Any other motivation rendered that action morally meaningless. One imagines the Kantian ideal moral agent as some sort of automaton, coldly moving through life, making passionless decisions out of duty.

Surely a better understanding of living a moral life is needed. Moral theology, or Christian ethics, considers not the immanent essence of God, but rather how people in relation to God can make that relation the defining element of their life. Such treatment always implicitly reveals something about God. To understand how human emotion can be most properly understood as part of that moral life, theologians would be best served by knowing how emotions function in the person from the perspective of biology, psychiatry, and psychology. The purpose of this paper is to contribute to that dialogue between theology and the sciences. It will focus on the relationship between reason and the emotions as understood by Thomas Aquinas and by contemporary neurologist Antonio Damasio. Two preliminary topics, however, must be addressed prior to that discussion. First, a brief description will be offered of how dialogue between theology and science has progressed to the present, having paved the way for current work. Next, a central theological issue, the relation between nature and grace, will be adduced as a cornerstone to this dialogue.

A comparison of Thomas with a contemporary neurologist may appear odd. Yet, perhaps due to his knowledge of Aristotelian naturalistic philosophy, Thomas's theological system is quite thorough in its elaboration of human anthropology, and it directly addresses this issue of the relation between reason and the emotions. While describing "man and his acts" in the
Secunda pars, Thomas is far more nuanced as to the role of emotion in the moral life than the above caricature of Kant’s thought. Damasio’s work will be offered as a correction to, yet far from a dismissal of, Thomas’s vision. In fact, it will be demonstrated that the majority of Thomas’s work on the emotions is quite compatible with modern scientific research. Understood in tandem, as partners in dialogue, Damasio and Thomas present a vision of the role of emotions in the moral life that satisfies the concerns of both theology and science in their convergence on the truth.

As stated above, this dialogue is already well under way. Earlier in this century, Alfred North Whitehead melded his work in mathematics and in philosophy to form a vision that has engendered the process approach to theology. This work continues today through such authors as John Cobb and David Griffin. In “Philosophy and Philosophising in Theology,” Karl Rahner claims that theology’s new partner in dialogue in the age of pluralism should be the sciences, as opposed to philosophy. He asserts that theology is concerned with humanity’s history and future—not as things, but as created by humanity. While philosophy can consider history and the future only in a formal manner, “the sciences represent history and the future.” Paul Davies is a more recent advocate of that dialogue, speaking from the side of the sciences.

One final example of such dialogue offered here is the recent book of Jamēs M. Gustafson entitled Intersections. In it he explicitly treats the dynamics of the dialogue. He claims that “intersections” between theology and science have thus far been primarily one-way streets, with theology serving as informer of the “Godless sciences.” Gustafson finds three reasons behind this dynamic. He cites religion’s common claim to special authority by divine revelation. He notes that theology often claims a more comprehensive approach in matters of ultimate meaning. Finally, he states that theology often claims a privileged place in such dialogue, because the most important issues in the sciences are viewed as primarily theological and, hence, best left up to theological interpretations and approaches. A fine example of these approaches is the realm of bioethics, into which religious ethicists may tread with little or no understanding of the medical and biological reality defining the situation.

Yet Gustafson is dissatisfied with these approaches. He prefers an intersection between theology and the sciences with two-way traffic. In this scenario, theology still “has a claim to be heard” as much as other disciplines. Yet theology and ethics also have a responsibility to be informed by contributions from other fields of inquiry in their “descriptions, explanations, and interpretations of the human.” It is this model which is supported and utilized in this essay. It rests on a foundational theological assumption, the subject of the second preliminary remark.

Science is concerned primarily with the natural, and it can neglect the divine (and has often done so). Theology, on the other hand, is concerned especially with the divine, yet cannot neglect some treatment of nature in that vision. However, understandings of the natural order can vastly vary. Some may view the natural realm as worthless and decrepit, and focus solely on the world to come. Others may see it as divinely created and sanctified, albeit incomplete. Those involved in the dialogue between science and theology tend toward the latter position, and Thomas would be a good example. His contention that grace perfects nature is well known. He affirms

Understood in tandem, as partners in dialogue, Damasio and Thomas present a vision of the role of emotions in the moral life that satisfies the concerns of both theology and science in their convergence on the truth.
Dionysius when he says, “it belongs to Divine providence, not to destroy but to preserve the nature of things.” His treatment of the order of love confirms that Thomas views divine agency as operative not against, but within and through divinely created nature.\(^9\) Such an understanding of the relationship between grace and nature is crucial to this inquiry. It is here assumed that knowledge of God, or especially knowledge of how people in relation to God are defined by that relation, can be gleaned from analysis of divinely created nature. Thomas is surely no “naturalist” in the sense described by Rahner and Vorgrimler, for he does not completely identify the natural with the real.\(^1\) But he may be called a “natural theologian” through his affirmations concerning the natural world, insofar as it is God’s creature.\(^2\)

These two preliminary considerations are by no means exhaustive treatments of what are two challenging and complicated subjects. The brief discussion of theology between emotions and reason. Yet it is a necessary starting point in elaborating his main thesis, the conception of an embodied mind (as opposed to “em-brained” mind), which will not be discussed here. He attempts to demonstrate that reason can never be “pure,” in the sense of “emotionless.” He argues that while an overly emotional person may reason poorly, so too will the nonemotional person. This argument is obviously relevant to any judgment of Kant’s understanding of morality.

Damasio’s methodology combines experimentation and theory. He begins by describing several cases, briefly treated here, to add clarity to his conclusions. Two patients, Phineas and Eliot, suffered from similar disorders, and their cases will be described simultaneously. Both sustained major damage to portions of the frontal lobe of the brain. Amazingly, the damage spared all cognitive, motor, language, and sensory abilities. The victims could speak, move normally, and solve problems.\(^3\) However, they were still irrevocably changed. They are described as fitful, irreverent, impatient with things that conflict with their immediate desires, capricious, vacillating, and lacking any effective future planning. They seemed to show no responsibility for themselves or others. It seemed they had lost something uniquely human.\(^4\)

As doctors continued to test for intellectual defect, they noticed the patients’ surprising lack of emotion. Eliot is described as totally neutral about everything. He could recite the circumstances of his illness as a completely disinterested observer. Eliot even mentioned at one point that he didn’t “feel” things emotionally as he had before his illness. Damasio elaborates on the brain structures that were damaged, noting their instrumental role in human emotion. Both astonished and horrified, he asks his readers to imagine being intellectu-

Science is concerned primarily with the natural, and it can neglect the divine (and has often done so). Theology, on the other hand, is concerned especially with the divine, yet cannot neglect some treatment of nature in that vision.

and science in dialogue is not meant to be a comprehensive account, nor an appraisal of the validity, of the specific work mentioned. It is merely an indication that some sort of dialogue is extant, and that the comparison below is not as odd as it might initially seem. The even shorter discussion of the relation between nature and grace barely scratches the surface of that topic. Yet it will hopefully remind the reader of instances in the Christian tradition where knowledge of the divine-human relation is gleaned from inquiry into the divinely created natural order.

Damasio offers one such attempt in Descartes’ Error. His explicit purpose is not merely the re-articulation of the relation
ally aware of something, and even cognizant that it once roused them, yet to feel absolutely nothing regarding it. Such was life for Phineas and Eliot.

Regarding the implications of these findings for the moral life, the results of several batteries of tests showed that Eliot was indeed aware of ethical guidelines, and would even choose the "morally right" solution in the laboratory setting. He could retain, learn, and apply ethical norms, yet never in the outside world. Neither patient was able to hold a job, make simple decisions, or maintain familial and other interpersonal relations. Apparently "some part of the value system remains, and can be utilized in abstract terms, but it is unconnected to real-life situations." Once, upon finishing a set of such tests, Eliot, completely devoid of emotion, remarked, "After all this, I still won't know what to do." In this, he was wrong: he knew what to do, yet could not act on that knowledge.

Damasio concludes that "reduction in emotion may constitute an equally important source of irrational behavior" (emphasis in original). He claims that "pure reason" is an inadequate view of decision-making. People simply do not imagine all possibilities, weigh them rationally, and select the most reasonable option. Besides being wildly inefficient, such an approach would fail to "move" the agent toward appropriate choices. And so he posits a "somatic marker hypothesis" to explain how people make choices. As a person envisions different scenarios, he or she experiences bodily ("somatic") feelings toward them, which then "mark" that scenario. The person still rationally weighs alternatives, yet the emotions contribute to, and maximize (rather than replace), the efficient use of reason. Reason alone cannot cope well with the complexity and uncertainty of life, and thus requires special assistance. Emotions are essential in the assignment of basic value, and provide that assistance. Paraphrasing Pascal's famous maxim, Damasio says, "the organism has some reasons that reason must utilize" (emphasis in original).

One may begin to wonder what any of this has to do with Thomas Aquinas or even with theology. The intent here is not to confine moral theology to the field of cognitive psychology. Nor is the richness, complexity, and challenge of the moral life to be "explained away" with a biological account of the interplay between reason and the emotions. Certainly the moral life is not to be equated with the ability to hold a job or to recount an experience emotionally. Moral theology and neurology ask different questions, utilize different methodologies, and arrive at different forms of solutions. Yet both investigate the human reality, and surely there are intersections between the impact of the emotions on reason and the attempt to live a moral life. So, while the moral theologian need not grasp the intricacies (or even rely on the validity) of the somatic marker hypothesis, that theologian may allow an abundance of empirical evidence to impact the understanding of the role of emotions in the moral life.

With this purpose in mind, a brief description of Thomas's understanding of the relation between reason and the passions is offered to further that dialogue. Thomas directly inquires as to the goodness or badness of the passions (i.e., emotions) in I-II, 24, 3. A thorough analysis of this article, and those that support its presuppositions, will reveal Thomas's view on this question.

In article three Thomas claims "man's good is founded upon reason as its root." Earlier in the work he has established a systematic vision of humanity in relation to God, who is the final end and greatest happiness for humanity. Reason is the faculty that specifies actions that will lead humanity to this end. While reason is humanity's greatest (natural) asset on the path toward God, Thomas immediately asserts in article three that the human "good will be all the more perfect, according as it extends to all things pertaining to man." He seeks an integration of all that is human, when describing humanity's greatest good. All that is naturally and uniquely "human" is subject to the command of reason. The next logical question, then, is whether the
passions are subject to the command of reason. The answer to this question will reveal both the moral quality of the passions, and how (or if) they are related to reason.

Thomas had already addressed this topic in I-II, 17, 7. In that article Thomas reminds the reader that the passions are part of the sensitive appetite. “Now it must be observed that the sensitive appetite differs from the intellective appetite, which is called the will, in the fact that the sensitive appetite is a power of a corporeal organ, whereas the will is not.” For Thomas, the passions are firmly embodied. As such, they are not “wholly subject to the command of reason,” since the “condition or disposition of the body is not subject to the command of reason.” However, to the extent that any act of an appetite follows apprehension (which is regulated by reason), an “act of the sensitive appetite is subject to the command of reason.”

Where does that leave the passions? Considered in themselves, there is no moral good or evil in the passions. Yet if they are “subject to the command of reason,” there is moral good or evil in them. That leaves the passions in a “twofold relation to the judgment of reason.” Antecedently, the passions “obscure the judgment of reason” and, hence, diminish the moral quality of an act. Yet consequently, the passions can cooperate with the judgment of reason and help a person work “more promptly” toward the good. In this sense the passions increase the moral quality of an act. For “it belongs to the perfection of moral or human good, that the passions themselves also should be controlled by reason.” Thus Thomas recognizes the valid role of the passions in the moral life. They prompt the person toward morally good actions. Yet he considers their “input” morally appropriate only after reason has “decided” on the right way to act. The impact of emotions before or during that decision can only diminish the moral goodness of an act.

Thomas recognizes the valid role of the passions in the moral life. They prompt the person toward morally good actions. Yet he considers their “input” morally appropriate only after reason has “decided” on the right way to act. The impact of emotions before or during that decision can only diminish the moral goodness of an act.

or during that decision can only diminish the moral goodness of an act.

Though employing quite different language and methodology, clearly the thought of Damasio enjoys intersections with that of Thomas. First, some similarities. Both thinkers view reason as crucial in making moral decisions. For Damasio, it weighs somatically marked alternatives (though to describe its role separates reason from emotion too distinctly in the process). For Thomas, reason is the final human criterion of goodness. Both also claim that the moral life is inadequate without the involvement of emotions. For Thomas, the person who possesses the human virtues might be called “passionately reasonable.” Damasio might call such a person an “emotional reasoner.” Both paradigms are vastly different from the Kantian model, and unfortunately neither accurately describes Phineas or Eliot.

Yet there are subtle differences between the two paradigms, as should be apparent from the above descriptors. Whereas Thomas’s paradigm is a reasonable person with passion, Damasio’s person is emotional before using reason. In other words, the passions have only consequent moral value for Thomas. In fact, antecedently they “obscure” reason and “diminish” the moral quality of an act. This is far from the case for Damasio. While not wanting to make emotion the sole determiner of ethical action, he certainly proposes a crucial role for emotion before the use of reason. In fact, he claims that reason cannot function in

THE BOSTON THEOLOGICAL INSTITUTE
the real world without such emotional predispositions.

Another point on which they diverge is the assignment of value to choices. For Thomas this is solely a matter of reason. Yet for Damasio, the emotions must also be involved in that process. Emotions add a value to a choice that somehow moves the agent to act toward that option. (Recall that Eliot could never act on his accurate knowledge of ethical convention.) Thomas indicates a possible openness to such a role for the emotions in I-I, 24, 4 ad. 2, when he mentions certain passions as having material goodness in themselves. Yet in the end, emotions for Thomas must remain firmly subject to the command of reason. He even claims that one way in which passions arise consequently is by an overflow from a strong will!

Thomas offers an account of the passions that gives them an important role in the moral life. Yet his account is inadequate in its overemphasis on the primacy of reason during moral decision-making. Were it adequate alone, Eliot and Phineas would be able to live moral, albeit passionless, lives. Yet Damasio's work demonstrates that reason alone does not compel one to act morally.

Contemporary theologians would benefit from drawing on Thomas's largely accurate work on the passions, along with some correction from recent neurobiological research, in order to construct a vision of the moral life in which the emotions enjoy their proper role. This paper is obviously only the beginning of that task. Several issues are yet to be addressed. For instance, moral theologians today tend to elaborate an "ethics of being," or even a virtue ethic, approaches not treated here. It is supposed that such demonstration of the necessity of emotion in an act-based ethic would make that task easier. Perhaps Thomas's moral virtues would result in passions that could antecedently contribute to moral decision-making. There are also issues of religious and ethical motivation that are only hinted at here. Finally, an approach has been chosen here that is more individualistic than would be preferred either by evolutionary biologists or by community ethicists. Future work to broaden the scope of approach along these lines promises to be fruitful, owing to the benefits offered by theology and science in dialogue.

Works cited:

Endnotes:

1Oakley, p. 88.
2Kant, p. 13.
3Boyle, p. 16.
4Rahner, pp. 60-62.
5Ibid., p. 62.
Bill Mattison received the Master of Theological Studies degree in 1997 from Weston Jesuit School of Theology. He is currently pursuing doctoral studies at the University of Notre Dame.

This essay received a First Prize.