Compositional Reasoning about Real-Time Asynchronous Communication with Time-Outs*

D. Peticolas
Department of Computer Science
University of California, Davis
Davis, CA 95616

F. A. Stomp
Department of Computer Science
University of California, Davis
Davis, CA 95616

Abstract
This paper describes ongoing work in developing a compositional trace-based semantics and proof system for a real-time language. The semantics models distributed processes communicating over asynchronous FIFO communication channels. Sending processes can specify time-out periods for individual messages. Messages not received within their time-out period are 'lost'. Program behavior is modeled as traces of events, including events (such as asynchronous messages) which occur after termination. The proof system uses specification triples with explicit variables for time and program traces.

1 Introduction
This paper describes ongoing work in developing a compositional trace-based semantics and proof system for a real-time language. The semantics models distributed processes communicating over asynchronous FIFO communication channels. Sending processes can specify time-out periods for individual messages. Messages not received within their time-out period are 'lost'.

Additional work in real-time asynchronous message-passing includes [4, 2]. These works model asynchronous message-passing using explicit data structures such as FIFO queues. In contrast, the approach presented here uses a different method - associating timestamps with individual messages [7] and modeling messages as events which occur in the 'future', i.e., after a send command has completed execution.

Using a trace semantics with future events eliminates the need for additional data structures to model communications channels. Furthermore, the semantics of message time-out can also be defined in a straightforward, compositional way.

Our method is used to define a denotational semantics for a CSP-like language in the style of the synchronous real-time semantics of [6, 8]. Due to space requirements, the presentation will be at an informal level, with formal definitions omitted. A more formal presentation will be found in a forthcoming paper [12].

2 Language
The programming language includes a guarded command (with an optional time-out arm), a delay statement, iteration, and parallel composition. Variables are not shared between processes. Processes communicate along unidirectional asynchronous channels which link two distinct processes and messages are received in the order sent. However, messages have a sender-specified time-out period and messages that are not received within their time-out are removed from their channel and are lost. We will use the term FIFO to denote traditional first-in first-out ordering modulo any lost messages.

The syntax of the programming language is given below where c, c_i are channels, x, x_i are variables, n is a natural number, and b_i and e are boolean expressions and numerical expressions, respectively.

$$P ::= \text{skip} \mid \text{delay } e \mid x ::= e \mid c!(c_1, c_2) \mid c?x \mid \text{split } P_1; P_2 \mid P \text{ + } G \mid P \parallel P_2$$

$$G ::= [\bigwedge_{i=1}^n b_i \rightarrow S_i] \mid [\bigwedge_{i=1}^n b_i; c_i?x_i \rightarrow S_i] \parallel b_{n+1}; \text{delay } e \rightarrow S_{n+1}$$

Since one of the contributions of this work involves describing the semantics of sending messages with time-outs and composition, we describe the send command first, and then briefly describe the receive command and parallel composition. In the discussion below, several constants of the form C_{sub} are used to denote strictly positive time durations.

Koymans et al [9] divide an asynchronous message transmission into five stages. Only the first stage involves the actual send command, the rest are waiting for transmission, transmission, arrival, and receipt. Later work by other authors [4, 16] develops a real-time compositional trace semantics and proof system for asynchronously communicating processes based on Hooman's
work for synchronous real-time processes [6]. However, these semantics assume zero transmission time, i.e., a message can be received immediately upon termination of the send command.

We generalize asynchronous sending to the more realistic case of a non-zero transmission time. Furthermore, we allow senders to specify a time-out period for individual messages. The command \(c!\langle e_1, e_2 \rangle \) (asynchronously) sends the message \(e_1 \) on channel \(c \) with a time-out of \(e_2 \) time units. All send commands execute for \(C_{send} \) time units.

A message becomes visible (and therefore receivable) to the receiving process \(C_{recv} \) time units after the send command has begun execution. Thus, \(C_{recv} \) includes both the send command execution and the transmission time. Once a message becomes visible to a receiver, it remains visible until one of two events occur:

- The message is received, or
- The time-out period elapses and the message is lost.

The informal meaning of some other commands is given below:

- \(c?x \) blocks (possibly forever) until a message is visible on channel \(c \) and then transfers the message into \(x \). Transfering the message requires \(C_{recv} \) time units. If more than one message is visible, the message which has been visible for the longest time is received. In other words, messages are received in FIFO order.

- \(P_1 \parallel P_2 \) is the parallel execution of \(P_1 \) and \(P_2 \) in which each process executes on a separate processor. This is the maximal parallelism assumption of [13] used in [8, 6, 16].

3 Semantics

The semantics employ the concepts of states, events, traces, and models. A state is a mapping from program variables to values. The value of an expression \(e \) in state \(\sigma \) is denoted by \(\sigma(e) \).

An event is an observation of program activity at some point in time. The events used to model communication activity are listed below.

- \(c?? \) indicates that a process is waiting for a message on channel \(c \).
- \(c!\langle v, \tau \rangle \) indicates the presence of a visible message on channel \(c \) with value \(v \) and which became visible at time \(\tau \). The time \(\tau \) is used to specify that messages are received in the order they appear, as well as to distinguish between different occurrences of the same message [7].

- \(\langle v, \tau \rangle \) indicates the receipt of \(v \) on channel \(c \) and \(v \) was first visible at time \(\tau \).
- \(\langle v, \tau \rangle \) indicates the time-out of \(v \) on channel \(c \) and \(v \) was first visible at time \(\tau \).

A trace is a pair \((t, \tau) \) consisting of a (possibly infinite) time \(\tau \) and a mapping \(t \) from continuous time values to sets of events. Function \(t \) represents the events occurring over time and \(\tau \) represents the time at which program execution stops. Certain events may be observed in the future, after a process has finished execution. Specifically, the effect of a send command (a visible message and eventual communication or time-out) is represented by future events.

A model is a pair \((\sigma, t) \) where \(t \) is a trace and \(\sigma \) is a state. It represents a computation of a program where \(\sigma \) determines the value of all variables when the program terminates. If \(t \) has infinite length, then \(\sigma \) is irrelevant. The meaning of programs is defined as a mapping from an 'initial' model to sets of 'final' models. The set of final models represents the possible computations of the program when executed following the initial model. We give definitions below for the send command and for parallel composition.

The meaning of a send command is defined as the union of two possibilities:

- The message is received before \(e_2 \) time units have elapsed, or
- The message is visible for \(e_2 \) time units and is then removed from the communications medium, i.e., the message is lost.

The meaning of a send command contains a trace for every possible time of communication for the first possibility and one trace for the second.

The parallel composition of two programs is essentially the parallel combination of each program’s respective traces. However, we must exclude parallel combinations which cannot occur using three conditions: First, a process executing a receive statement never blocks when there are visible messages (maximal parallelism). Second, when two programs are executed in parallel, their traces must be consistent with respect to communications along their shared channels. Finally, a process always receives messages in FIFO order.

The semantics of parallel composition is then defined as every possible parallel execution of traces subject to the three requirements above.

4 Proof System

The proof system uses specification triples \{p\} S \{q\} to express properties of programs. Postcondition \(q \) is interpreted over all models, including non-terminating computations.
As in [6], the assertion language uses a special variable, here denoted T, to represent time. In addition, there is a special trace variable Π which denotes the continuous trace of events in a program. Thus, the assertion $c?? \in \Pi(T)$ is interpreted as "there is a process waiting on channel c at time T.

The use of Π is in contrast to [6] in which the trace is implicit in the assertion language. Using an explicit trace variable permits backwards proof rules using syntactic substitution of trace expressions.

Below is the proof rule for the send command. The operator \oplus is the pointwise union of trace expressions. The trace expression $send(c, e_1, e_2, \tau)$ is interpreted as the continuous sequence of events that would be observed in which a message was sent at time 0 and received (or lost) at time τ.

$$
p \to \forall \tau \in [T + C_{send}, T + C_{send} + e_2] :
q([T + C_{send})/T, (\Pi \oplus send(c, e_1, e_2, \tau))/\Pi]
\{p\} c ! (e_1, e_2) \{q\}
$$

The proof rule for the receive command is very similar to that for send.

$$
p \to \forall \nu, \tau_0, \tau \in [T, \infty] :
q([T + C_{recv})/T, (\Pi \oplus recv(c, v, \tau, \tau_0))/\Pi, v/x]
\{p\} c ? x \{q\}
$$

The proof rule for parallel composition is given below. As in [17], the rule is only valid if all references to Π in the assertions are in a restricted form Π_{cset} where $cset$ is a collection of channel names. In essence, for the rule to be valid, the restricted channels of $\{\}i$ must be a subset of those in S_2 to prevent interference between assertions. There is a similar restriction on the variables of q_i.

$$
\{p_1\} S_1 \{q_1\}, \{p_2\} S_2 \{q_2\}
\{p_1 \land p_2\} S_1 \parallel S_2 \{q\},
$$

for $q \equiv \exists t_1, t_2, q_1[t_1/T] \land q_2[t_2/T] \land T = \max(t_1, t_2)$.

There is also an axiom for parallel composition which introduces the three conditions for parallel composition explained in Section 3. As in [6], these conditions are known as well-formedness conditions.

$$
\{true\} S_1 \parallel S_2 \{WF_{cset}\},
$$

where $WF_{cset} \equiv NoWait_{cset} \land Fifo_{cset} \land Agree_{cset}$ and $cset \subseteq chan(S_1 \parallel S_2)$.

The $NoWait_{cset}$ assertion specifies that a process never waits to receive on a channel $c \in cset$ while a message is visible on c. $Fifo_{cset}$ asserts that messages are received in the order sent and $Agree_{cset}$ asserts that S_1 and S_2 'match' on communications along channels in $cset$. As an example, $NoWait_{cset}$ is defined as:

$$
\forall c \in cset, v, \tau, \tau_0. c ! (v, \tau) \in \Pi(\tau_0) \Rightarrow c ?? \notin \Pi(\tau_0)
$$

To combine the proof rule and axiom for parallel composition, it is useful to have proof rules for conjunction and consequence.

$$
\{p_1\} S \{q_1\}, \{p_2\} S \{q_2\}
\{p_1 \land p_2\} S \{q_1 \land q_2\}
\{p\} S \{q\}
$$

Finally, we present a few of the more basic rules and axioms. Below are the axioms for skip, delay, and assignment.

$$
\{p\} skip \{p\}
\{p\}(T + e)/T \land T < \infty \rightarrow \text{delay} \ e \ \{p\}
\{p\}(T + C_{assign})/T, e/x \land T < \infty \ \ x := e \ \{p\}
$$

The rule for sequential composition is straightforward.

$$
\{p\} S_1 \{r\}, \{r\} S_2 \{q\}
\{p\} S_1; S_2 \{(r \land time = \infty) \lor q\}
$$

Due to space requirements, we have omitted some of the rules, such as the rules for guarded commands.

5 Conclusion and Future Work

This paper has presented ongoing work in developing a compositional semantics and proof system for asynchronous message passing with time-outs. The work models program behavior as traces of events, including events that occur after program termination (such as asynchronous messages). The proof system uses specification triples with explicit variables for time and program traces.

Other work in real-time formal methods research includes predicate transfer with time-outs on sending and receiving [3], and proof outlines in real-time shared variable settings [15, 14]. A process algebraic approach including resources and priorities is used in [5], while state machines are used in [10, 1].

Future work will involve finishing the soundness proof and developing a completeness proof for the system. We are also mechanizing the system in the PVS theorem prover [11].

References

