2015-03-31

Symmetry Breaking and Friction in Few Layer Phosphorene

Christopher, Jason

http://hdl.handle.net/2144/11659

Boston University
Symmetry Breaking and Friction in Few Layer Phosphorene

Methodology

- **Applying strain to 2D Materials:**
 - Example Samples
 - Sample Cross Section
 - Pressure Vessel
 - Holes RIE into substrates
 - Phosphorene exfoliated directly onto substrate
 - h-BN transferred over holes via Van der Waals Assembly Process
 - Phosphorene exfoliation, storage and measurement done in argon gas

- **Probing Local Strain with Raman:**
 - h-BN Schematics of the process
 - Phosphorene Schematic: Argon or N₂

Strain Induced Peak Splitting

- **Splitting not predicted by Group Theory!**
 - Raman at Center of Microchamber vs. Pressure
 - Data Fit Dbl. Lorentzian
 - Peak for Ext. Mat. Prop.
 - Scan Position [µm]

Extracted Material Properties

- **h-BN E₂g Peak Splitting**
 - Peak Center [cm⁻¹]
 - Peak Intensities
 - Scan Position [µm]

Friction

- **Phosphorene**
 - Strain response parameters found for low energy peaks (L)
 - Mode Experiment DFT
 - Friction Force [MPa]
 - Pressure [MPa]

Theory

- **Generated Strain Distribution:**
 - Analytic Solution ⇒ Extract fundamental properties from data
 - Membrane approximation
 - Fourier Series in Azimuthal Coordinate
 - Effective 2D elastic constants

- **Phonon Strain Response:**
 - Taylor Expand Phonon Secular Equation in Strain:
 - Use Group Theory to Determine Non-Zero Matrix Elements:
 - For h-BN (Point Group D₃₃)
 - For Phosphorene (Point Group C₂ᵥ)

- **Hypothesis Testing has ruled out a second laser spot, material de-lamination, and grain boundaries**

Contact: jwc@bu.edu